Active tension adaptation at a shortened arterial muscle length: inhibition by cytochalasin-D.

نویسندگان

  • Melissa L Bednarek
  • John E Speich
  • Amy S Miner
  • Paul H Ratz
چکیده

Unlike the static length-tension curve of striated muscle, airway and urinary bladder smooth muscles display a dynamic length-tension curve. Much less is known about the plasticity of the length-tension curve of vascular smooth muscle. The present study demonstrates that there were significant increases of ∼15% in the phasic phase and ∼10% in the tonic phase of a third KCl-induced contraction of a rabbit femoral artery ring relative to the first contraction after a 20% decrease in length from an optimal muscle length (L(0)) to 0.8-fold L(0). Typically, three repeated contractions were necessary for full length adaptation to occur. The tonic phase of a third KCl-induced contraction was increased by ∼50% after the release of tissues from 1.25-fold to 0.75-fold L(o). The mechanism for this phenomenon did not appear to lie in thick filament regulation because there was no increase in myosin light chain (MLC) phosphorylation to support the increase in tension nor was length adaptation abolished when Ca(2+) entry was limited by nifedipine and when Rho kinase (ROCK) was blocked by H-1152. However, length adaptation of both the phasic and tonic phases was abolished when actin polymerization was inhibited through blockade of the plus end of actin by cytochalasin-D. Interestingly, inhibition of actin polymerization when G-actin monomers were sequestered by latrunculin-B increased the phasic phase and had no effect on the tonic phase of contraction during length adaptation. These data suggest that for a given level of cytosolic free Ca(2+), active tension in the femoral artery can be sensitized not only by regulation of MLC phosphatase via ROCK and protein kinase C, as has been reported by others, but also by a nonmyosin regulatory mechanism involving actin polymerization. Dysregulation of this form of active tension modulation may provide insight into alterations of large artery stiffness in hypertension.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Plasticity in Skeletal, Cardiac, and Smooth Muscle Selected Contribution: Effect of chronic passive length change on airway smooth muscle length-tension relationship

Wang, Lu, Peter D. Paré, and Chun Y. Seow. Selected Contribution: Effect of chronic passive length change on airway smooth muscle length-tension relationship. J Appl Physiol 90: 734–740, 2001.—The ability of rabbit trachealis to undergo plastic adaptation to chronic shortening or lengthening was assessed by setting the muscle preparations at three lengths for 24 h in relaxed state: a reference ...

متن کامل

Adaptation to chronic length change in explanted airway smooth muscle.

It has been shown that airway smooth muscle in vitro is able to maintain active force over a large length range by adaptation in the absence of periodic stimulations at 4 degrees C (Wang L, Paré PD, and Seow CY. J Appl Physiol 90: 734-740, 2001). In this study, we show that such adaptation also takes place at body temperature and that long-term adaptation results in irreversible functional chan...

متن کامل

Selected contribution: effect of chronic passive length change on airway smooth muscle length-tension relationship.

The ability of rabbit trachealis to undergo plastic adaptation to chronic shortening or lengthening was assessed by setting the muscle preparations at three lengths for 24 h in relaxed state: a reference length in which applied force was approximately 1-2% of maximal active force (P(o)) and lengths considerably shorter and longer than the reference. Passive and active length-tension (L-T) curve...

متن کامل

Response of arterial smooth muscle to length perturbation.

The ability of arterial smooth muscle to generate tension is influenced by muscle length. An unsettled question is whether the length-tension relationship is a simple reflection of the contractile filament overlap, as it is in skeletal muscle. There are several factors that could potentially affect tension generation in arterial smooth muscle; these include stretch-induced myogenic response and...

متن کامل

Length-dependent modulation of smooth muscle activation: effects of agonist, cytochalasin, and temperature.

We tested the hypothesis that mechanical strain modulates agonist sensitivity of smooth muscle by measuring myosin phosphorylation and contractile force in bovine tracheal smooth muscle activated by various concentrations of the muscarinic receptor agonist carbachol and at various muscle lengths. Increasing carbachol concentration by 10,000-fold did not restore myosin phosphorylation levels at ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 300 4  شماره 

صفحات  -

تاریخ انتشار 2011